Emory Math Circle

What is your favourite thing about Spring?

Warmup

- A diagonal for a polygon is a segment connecting two non-adjacent vertices
- Example: A triangle has NO diagonals
- Example: A quadrilateral has 2 diagonals

Warmup II

- How many diagonals in a pentagon (5 sides)?
- How many in a hexagon (6 sides)?
- How many in an n-gon (n sides)?

Triangulation

- We can split any polygon into triangles by drawing diagonals
- This is called triangulation!

Breakout Rooms

We will first look at how many triangulations a polygon has.

Triangulate a triangle

How many ways are there are to triangulate a triangle?

Triangulate a quadrilateral

How many ways are there are to triangulate a quadrilateral?

Triangulate a pentagon

How many ways are there are to triangulate a pentagon?

Breakout Rooms

Now we will look at something completely different (but is it?)

We are going to count how to walk on a grid from (0,0) to (n,n)

You can go up, and you can go right

However, the y-coordinate can never be greater than the x-coordinate

Count to grid: (1,1)

How many ways are there are to walk to (1,1)?

Count to grid: (2,2)

How many ways are there are to walk to (2,2)?

Count to grid: (3,3)

How many ways are there are to walk to (3,3)?

Count to grid: (4,4)

How many ways are there are to walk to (4,4)?

Breakout Rooms

Now we will look at something completely different again (but is it?) Let's create parenthesis palindromes – we want to find the different ways to pair up parentheses

So – parentheses cannot be unpaired!

This is a valid set: ()()(())

This is not valid:)(()()

Let's check in on pairs of parentheses

How many ways are there to create one pair of matched parentheses?

And what about 2 pairs of matched parentheses?

Let's check in on pairs of parentheses

How many ways are there to create three pairs of matched parentheses?

And what about 4 pairs of matched parentheses?

So, what did we learn?

Did you see a pattern in the sequences:

We tried number of triangulations for polygons polygons were: 3, 4, 5, 6 sided (remember, their diagonals are: 0,2,3,4)

We tried the grid walks to: (1,1), (2,2), (3,3), (4,4)

And we tried the parentheses sets of: 1, 2, 3, 4

So, what did we learn?

Those numbers (1,2,5,14) are called Catalan numbers!

$$C_0 = 1$$
, $C_1 = 1$, $C_2 = 2$, $C_3 = 5$, $C_4 = 14$

Is there an n-th solution?

Yes! But it is more complicated, so we can learn it later.

Catalan Numbers

The next number for the grid walk was 42.

How many ways do you think there are to triangulate a heptagon?

 $C_n=(2n \text{ choose } n)/(n+1)$ is the general formula for Catalan Numbers!